В перспективе нанотехнология может сыграть значительную роль в решении многих проблем, связанных с охраной окружающей среды. Речь идет, в первую очередь, об использовании наноустройств в системах исследования и контроля продуктов и отходов различных химических производств, о создании новых "чистых" технологий с минимальным выходом вредных отходов производства, а также о переработке мусора на свалках и очистке загрязненных водоемов. В дальнейшем предполагается осуществление непрерывного контроля и обработки обширных участков окружающей среды с целью их очистки от очень мелких частиц загрязняющих веществ, содержащихся в воде (размер < 300 нм) и в воздухе (< 20 нм).
Необходимо также учитывать, что наноструктурные материалы могут сами вызывать загрязнение окружающей среды, угрожающее здоровью человека. Загрязнение может быть связано как с существующей техникой (например, наночастицы в выхлопных газах дизельных двигателей), так и с новыми веществами или технологическими процессами. Во многих случаях нанотехнологии представляют собой новые производственные процессы, и их потенциальная опасность для окружающей среды должна быть тщательно оценена.
Сложные физико-химические процессы с участием наноструктур играют существенную роль во многих явлениях, определяющих изоляцию, высвобождение, подвижность и биологическую доступность различных веществ (полезных и вредных) в окружающей среде. Микропроцессы, происходящие на границах раздела природных физических и биологических систем, определяют разные проблемы медицины и биологии. Изучение динамики процессов, специфичных для наноструктур в природных системах, позволит не только понять механизмы переноса и биологического усвоения веществ, но и использовать нанотехнологии для улучшения экологической обстановки.
В атмосфере, геологических породах, водной среде и биологических системах присутствует большое количество разнообразных естественных наночастиц и наноструктурных веществ, однако их влияние на здоровье человека пока не изучалось систематически. В некоторых случаях (например, при использовании кварцевых и асбестовых волокон) было обнаружено вредное воздействие наночастиц, в других — потенциальные опасности кажутся незначительными. Кроме того, следует учитывать, что аэрозоли из наноразмерных частиц постоянно участвуют в разнообразных атмосферных физико-химических процессах.
Нанотехнологии уже оказали значительное влияние на многие производства, связанные с окружающей средой и энергетикой. Некоторые примеры таких технологий приводятся ниже.
Сокращение отходов производства и повышение энергетического к.п.д.
Наиболее заметные успехи достигнуты в разработке новых методов катализа, где использование наноразмерных реагентов во многих случаях позволило резко повысить эффективность каталитических реакций (скорость, выход) как в гомогенных, так и гетерогенных системах. Использование наноразмерных материалов (например, аэрогеля или ксерогеля V205) в катодах литиевых аккумуляторов значительно повышает их емкость, срок службы и скорость зарядки/разряда.
Экологически безопасные композитные материалы
Совместимость композиционных материалов с наномасштабными инородными включениями открывает возможность производить высококачественные материалы специального назначения (например, для систем фильтрования). На основе таких композитов можно создавать системы, отличающиеся повышенной стойкостью к воздействию окружения, длительным сроком службы, низкой стоимостью обслуживания и ремонта, малым воздействием на окружающую среду. На их базе можно производить легкие и небольшие конструкции и устройства, характеризующиеся низким энергопотреблением. Композиционные наноматериалы отличаются большим структурным разнообразием и могут быть как очень простыми (сталь с включениями из оксидов или нитридов), так и очень сложными (гетерогенные композиты, обладающие заранее заданной, высокофункциональной структурой).
Переработка отходов
Наноструктурные материалы находят все возрастающее применение в процессах переработки и обезвреживания отходов, от окисления органических загрязнителей с помощью частиц ТЮг до связывания атомов тяжелых металлов наномасштабными поглотителями. Во многих случаях в качестве агентов окисления могут использоваться активированные облучением частицы (в растворах или аэрозолях). Недавно было обнаружено, что наноразмерные частицы ТЮг, подвергнутые УФ-облучению, могут очищать воздух от различных загрязнителей, включая опасные органические соединения, клетки, вирусы и ядовитые химикаты. Наноразмерные частицы, после соответствующей химической обработки их поверхности (образования производных соединений) лигандами или реагентами, могут эффективно связывать атомы тяжелых металлов или пассивировать загрязненные поверхности. Кроме того, предполагается, что нанотехнологии позволят так организовать химические производственные процессы, что в ходе их будет образовываться меньше отходов. В химии поверхностных явлений проводится изучение материалов со специально сконструированными наноструктурными поверхностями, которые обеспечат проведение требуемых реакций с образованием минимального количества отходов.
Преобразование энергии
Процессы, связанные с получением энергии (включая как непосредственное производство электрической энергии, так и добычу топлива, подлежащего транспортировке), наносят непоправимый вред окружающей среде. Наносистемы могут составить основу энергетических производств на возобновляемых источниках энергии, при функционировании которых образуется гораздо меньше вредных отходов. Примером может служить упомянутое выше использование наноразмерных или мезоразмерных материалов в электродах аккумуляторов или топливных элементах для транспортных средств.
Чистящие и моющие нано средства
|